Development of safe and effective nonviral gene therapy by eliminating CpG motifs from plasmid DNA vector.

نویسندگان

  • Yuki Takahashi
  • Makiya Nishikawa
  • Yoshinobu Takakura
چکیده

Nonviral gene therapy is expected to become a regular treatment for a variety of difficult-to-treat diseases, such as cancer and virus infection. Plasmid DNA, which is used in most nonviral gene delivery systems, usually contains, unmethylated cytosine-guanine dinucleotides, so called CpG motifs. CpG motifs are recognized by immune cells as a danger signal, leading to an inflammatory response. Such inflammatory responses could affect the safety and effectiveness of nonviral gene therapy. Therefore, reducing the number of CpG motifs in plasmid DNA has been used to increase the potency of plasmid DNA-based gene therapy. Previous studies have demonstrated that CpG reduction can extend the time period of transgene expression from plasmid DNA after in vivo gene transfer. In this review, the biological functions of the CpG motif are briefly summarized. Then, safety issues of nonviral gene therapy are discussed from the viewpoint of the inflammatory response to the CpG motif in plasmid DNA, and the effects of the CpG motif in plasmid DNA on the transgene expression profile of nonviral gene transfer are reviewed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

طراحی و ساخت سازه‌ ژنی نوترکیب بیان کننده ژن حفاظت کننده سلولی

Background : Genetic manipulation is an effective strategy to protect cells against environmental damages and enhance their capabilities for therapeutic usage. In order to avoid unwanted side effects, such as cancers, the expression of genes should be temporary increased. The aim of this study was to clone and temporary increased expression of a cell protective gene, Metallothionein 1 (MT1) in ...

متن کامل

Silencing of episomal transgene expression in liver by plasmid bacterial backbone DNA is independent of CpG methylation.

Minicircle DNA vectors devoid of plasmid bacterial backbone, (BB) DNAs, are transcriptionally persistent, whereas their parent plasmid counterparts are silenced in the liver. In this study we establish that circular plasmid BB provided in trans did not silence a transgene expression cassette in vivo, further confirming our previous conclusions that the covalent attachment of the plasmid BB to t...

متن کامل

Designing and construction of a DNA vaccine encoding tb10.4 gene of Mycobacterium tuberculosis

Background: Tuberculosis (TB) remains as a major cause of death around the world. Construction of a new vaccine against tuberculosis is an effective way to control it. Several vaccines against this disease have been developed. The aim of the present study was to cloning of tb10.4 gene in pcDNA3.1+ plasmid and evaluation of its expression in eukaryotic cells. ...

متن کامل

Optimization of cis-acting elements for gene expression from nonviral vectors in vivo.

While naked DNA gene transfer in vivo usually results in transient gene expression, in some cases long-term transgene expression can be achieved. Here we demonstrate that cis-acting DNA elements flanking the transgene expression cassette and components in the plasmid backbone can significantly influence expression levels from nonviral vectors. To demonstrate this, we administered our most robus...

متن کامل

انتقال ژن به سلول‌های بنیادی مزانشیمال موشی: بررسی مقایسه‌ای دو روش ویروسی و غیر ویروسی

    Background and Aims : Mesenchymal stem cells (MSCs) are attractive targets for cell and gene therapy, because they can differentiate into many cell lineages. Hence, finding an efficient and suitable method for transferring of genetic materials to these cells is very essential. In this study, we evaluated the efficiency of two methods of gene transferring, viral and nonviral, in transfection...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in bioscience

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012